I suspect I got a lot of bad karma this day (I'm the evil mind behind "Crocodile" and "Elephant".) Congratulations to the winners! See here for final results.
- Player 1 moves on the nodes of the graph, starting at the designated start node, and aiming to reach a target node. In each turn, she can traverse any edge out of her current node [except the blocked edge / see below], incurring a cost equal to the weight of the edge.
- Player 2 can block one edge at every turn. When an edge is blocked, Player 1 cannot traverse it in the next turn. An edge can be blocked multiple times, and any past edge is "unblocked" when a new edge is blocked.
Find the minimum budget B such that Player 1 can reach a target node with cost ≤ B, regardless of what Play 2 does. Running time: O~(n+m).
Problem Elephants. You have n elephants on the line at given coordinates. The elephants make n moves: in each unit of time, some elephant moves to another position. You have cameras that can photograph any interval of length L of the line. After each move, output the minimum number of cameras needed to phtograph all elephants in the current configuration.
Running time: subquadratic in n.
Problem Parrots. You are given a message of M bytes (0..255) to transmit over a weird channel. The channel can carry elements between 1 and R, but elements don't arrive in order (they are permuted adversarially). Send the message, minimizing the number L of elements sent across the channel.
Running time: polynomial. (Yes, this is an easy problem for a trained theorist.)