I do not write about politics, since I could never be as good as some other people who do. A link to fellow theorist Bernard Chazelle, and the captivating essays on his webpage, is in order. (I hesitated posting a link not because I disagree with some of his arguments, which indeed I do, but because you will probably get distracted and not read the rest of my post... But render unto Caesar the things which are Caesar’s, I already said there are many people who write better than me.)
So, I did go to China, and I am back, and now I feel compelled to write a few words.
My friends in Romania ask me how the Chinese can stand their government, and why they are not fighting. Of course, the obvious guess on everybody's lips is panem et circenses -- the Chinese economy has been making strides forward, which allowed the government to keep citizens happy.
But another reason that cannot be ignored lies in the remarkable efficiency of Chinese propaganda among its citizens. A prime accomplishment of the communist machine is the fact that political discussion is so touchy among Chinese inteligentia in the US. The party has managed to convince even truly brilliant people that the state is the party and the party is the state. Then, if somebody challenges Chinese communism, they are attacking the Chinese patriotic sentiment. Love of the Vaterland becomes a shield of the regime.
Indeed, they are careful and proactive about propaganda. In the new age of communication, they have set up the world's best known firewall to keep the citizens away from subversive information. A non-technical person will not be able to get to Wikipedia, or to blogspot, or to any "unofficial" description of Tiananmen 1989, and will not be able to use encryption (ssh).
In fact, brainwashing and censorship were such a durable and effective efforts, that it became hard to get censors! A censor recently let a reference to Tiannmen be published because she thought June 4, 1989 was a mining disaster [Reuters].
Tiananmen has become the place where "On this spot in 1989, nothing happened".
Yet despite the brainwashing, there are those who are fighting (and currently losing). Taiwan's situation is constantly becoming worse, since every dollar that the booming Chinese economy earns is another dollar behind the economic blackmail in the One China policy. With Burkina Faso as the largest country to officially recognize Taiwan, their backing sadly reminds us of the grand Coalition of the Willing.
Inside the People's Republic, a cultural fight is led. In good Soviet tradition, the Party's policy was: grab as much land and people as possible, and rebrand everything as Chinese. (Han Chinese, of course.)
Tibet and Xinjiang are just about as Chinese as Finland. But in the past half-century, the Party has managed to bring 7 million or so Han into Xinjiang, a land populated by Turkic people (Uyghur and Kazakhs). This raised the percentage of Han from zeroish to 40%, and will soon make Xinjiang "Chinese", a feat that would have made the Father of Nations, Joseph Stalin, exceedingly proud.
As for Tibet, it may not even be needed to resort to ethnic invasion. Here is the simple story. The Dalai Lama and the Panchen Lama assure a continuity in Tibetan spiritual leadership. When one dies, the other searches for a reincarnation, and "takes care of business," while the young boy found to be the reincarnation grows up, and is educated to be a great Lama. When Panchen Lama died, the Dalai Lama (from exile in India) selected a new Panchen Lama in communication with a search commitee wandering across Tibet.
In 1995, the young boy became a political prisoner at the unlikely age of 6, and he has not been seen since. In its infinite wisdom and understanding of Tibetan culture, the Party chose the next Panchen Lama, and took the boy to Beijing. From there, he has been making periodic statements about the great freedom of religion enjoyed by the Chinese people living in Tibet.
Now, when the Dalai Lama dies, can anyone guess on what criteria the Panchen Lama (Beijing version) will select a reincarnation?
In the mean time, any attempt to cross into India and communicate with the Dalai Lama is a treason to the Chinese state. Here is a ghastly piece of footage caught by a Romanian cameraman while climbing in the Himalayas (which pedictably won some accolades at the Emmy Awards this year).
It shows a Chinese border patrol executing Tibetans who are trying to cross the mountain. Via the New York Times, we learn that China acknowledged the incident, and justified it as self-defense after the monks tried to attack the soldiers.
Sunday, September 30, 2007
China (III)
Posted by
Mihai
at
7:53 AM
8
comments
Thursday, September 20, 2007
Slepian, Wolf and relatives (III)
To wrap up this thread of posts, let me discuss some motivation and directions for asymmetric communication channels, described in post II.
In my talk in China, I mentioned the following naive motivation. We have two sensors in a river. Given the average velocity of the flow, we can deduce that the readings of the sensor upstream at some time t, will be correlated with the readings of the sensor downstream at some time t+Δt. The correlation will not be perfect (otherwise we wouldn't use two sensors), but it is enough to compress the message. However, the sensor downstream doesn't know the distribution of his own input, since he doesn't know the other sensor's reading at an earlier time.
This example is simple and intuitive enough that it should work as PR. Here are the more serious motivations that get thrown around:
- sensor networks (in some abstract way)
- internet connections (most ISPs give you faster download than upload; downloading from a satellite is significantly easier than uploading)
- stenography and combating consorship. This comes from the paper: [Feamster, Balazinska, Harfst, Balakrishnan, Karger: Infranet: Circumventing Web Censorship and Surveillance. USENIX Security Symposium 2002]
Moving on to 2., I have not seen examples where this approach might be useful at the scale of realistic ISP links, nor examples of how you might get the server to know the distribution better than you.
About 3., I have a feeling that it is simply accidental cobranding. To get your paper accepted to a practical conference, it helps to use some fancy theoretical work somewhere (maybe a place where you don't even need it), and theoretical work can claim practical importance if somebody uses it in a supposedly practical conference. I am reminded of a funny quote: "I would gladly work on the practical side of academia, but so little of practice actually applies to practice..."
Thus, unfortunately, I do not find the motivations I heard so compelling (outside of theoretical beauty with which I will fully agree).
What is probably needed is more attention towards the EE end of the discipline. Is anybody aware of any EE-work on this problem? In our abstract setting (Bob knows a distribution), any algorithm is ultimately impractical, because nobody works with perfect knowledge of a distribution (a distribution is a big object!). What we need is better modelling of what "understanding a distribution" means, and algorithms based on that. To give the prototypical sily example, the distribution may be (roughly) normal, so Bob only needs to know the mean and standard deviation.
On the lower bound side, I have some rough ideas to prove that the lower bound holds even if the distribution is the trajectory of a Markov chain of polynomal size (as opposed to the distribution in our paper, which really took exponentially many bits to describe).
Posted by
Mihai
at
12:29 PM
0
comments
Wednesday, September 19, 2007
Slepian, Wolf and relatives (II)
I didn't really get the answers I was hoping for in my original post on Slepian-Wolf coding, but let's move to the second part.
This post is about "asymmetric communication channels". Assume Alice receives an input x in {0,1}n, and she wants to communicate it to Bob. If x comes from some distribution D of less with entropy less than n, Alice and Bob should agree to communicate using a Huffman code and send ≤ H(D)+1 bits.
But what if D is only known to Bob, and not to Alice? Can Bob send something intelligent, which is still much less than the 2n description of the distribution, but which allows Alice to communicate efficiently? If you want to hear motivations and applications of this setup, I will discuss them in my next post. Personally, I find this "can you communicate a Huffman code" question sufficiently natural and intriguing.
It is not hard to show that the total communication needs to be at least n. Thus, a nontrivial protocol is only possible in an asymmetric setting, where Bob is allowed to communicate more than Alice.
Upper bounds. The problem was first studied by Adler and Maggs [FOCS'98], who gave a protocol in which Bob sends expected O(n) bits, and Alice sends expected O(H) bits. This is a surprising result: Bob is sending some sketch of the distribution that is logarithmic in its description, but with this sketch Alice can compress her input down to entropy.
There is one catch, though: the protocol uses O(1) rounds in expectation. It does not provide a guarantee for any fixed number of rounds.
With this catch, you can start to get a glimpse of how the protocol might run. Up to constant factors, a distribution with entropy H looks like a distribution putting probability 2-(H+1) on some 2H samples (mass 1/2), then probability 2-(H+2) on other 2H samples (total mass 1/4), probability 2-(H+3) on other 2H samples (mass 1/8) and so on. Bob is going to send a hash function {0,1}n -> {0,1}H which is injective on the 2H samples on the first level, and Alice returns the hash code. Bob sends the sample that maps to that hash code, and if Alice says he was wrong, they continue to the second level (which will only happen with probability 1/2). This continues, reaching level i (and round i) with probability 2-O(i).
There has been a lot of follow-up work, which tries to reduce the constants in the communication. Some papers have Alice communicating only H+2 bits, for instance. However, I do not like these results because they use roughly H rounds in expectation. In real life, a round of communication is much much more expensive than sending a few extra bits.
In SODA'05, Adler extended the protocol to the case where there are k Alice's, which have samples x1, ..., xk to communicate. These samples come from a joint distribution, known only to Bob.
Lower bounds. Micah Adler came to a problem session organized by Erik, and told us about the problem, highlighting the weird behavior that the number of rounds is geometric. Personally, I was fascinated by the question of whether this was tight.
Unfortunately, the proof eventually required not only some nice ideas, but also a lot of work in balancing everything just right. I spent a few months paying long daily visits to Nick's office, before we finally managed to make it go through. In the slides for my talk in China, I associated this problem with a bas-relief depicting galley slaves.
The proof uses round elimination and message switching (which I will talk about in future posts), but in an unusual context: you need to keep recursing in these smaller and smaller probability spaces.
Eventually, we showed that i rounds are needed with probability 2-O(i lg i), which is fairly close to optimal, and demonstrates that any fixed number of rounds is not enough. In the good tradition of sharp phase transitions, the lower bound holds even if Bob can communicate an outrageous amount: 2^{n1-ε}.
Our paper appeared in SODA'06. The paper and slides have fairly good intuition for how the bound works.
Posted by
Mihai
at
11:25 PM
0
comments
Job Market
Since I have announced that I am graduating this year and looking for a job, people have been asking me who else is on the market. I am in China now, with all the brilliant graduate students, so I took the opportunity to ask who will be on the job market. Here is the list of people who said they will be applying for faculty jobs in the US in 2007. This list does not include people who announced they are only looking for postdocs, or who want jobs outside US.
Alphabetically:
- Nina Balcan
- Andrej Bogdanov
- Mark Braverman (maybe)
- Constantinos Daskalakis
- Nick Harvey
- Philipp Hertel (maybe)
- Adriana Karagiozova (maybe)
- Anup Rao (maybe)
- Paul Valiant
- Ryan Williams
- Amir Yehudayoff (maybe)
I have heard (rumours) about the following people:
Posted by
Mihai
at
2:01 AM
3
comments
Monday, September 17, 2007
China (II)
As announced, I am attending China Theory Week in Beijing.
Sadly, this puts me behind the Great Firewall of China, which hates blogspot. I will wait until I leave China to express my opinion on this :) Lots and lots of thanks to Erik and Elad Verbin (currently postdoc here), for teaching me how to get around the firewall.
My talk here was: "Round Elimination — A Proof, A Concept, A Direction."
Round elimination, which can be traced back to [Ajtai 1989], has proven to be one of the most useful tools in communication complexity, playing a role similar to PCPs in approximation algorithms. We describe the history of its many variants, including the simplest known proof, and the most illustrative applications. We also describe possible future work, including conjectures that would bring significant progress in applications.Slides are available in pptx or exported as ppt. The PDF didn't look decent enough to be posted; sorry.
Based on literature survey, and joint publications with Micah Adler, Amit Chakrabarti, Erik Demaine, Sudipto Guha, TS Jayram, Nick Harvey, and Mikkel Thorup.
If you know my usual style of giving talks, you know the slides are somewhat unorthodox. Since I will hopefully give a nonzero number of job talks in the spring, I am especially curious what readers think of the advice on slide 2 :)
Learn from Holywood: sex and violence are the key to a successful job talk.
Posted by
Mihai
at
9:27 PM
2
comments
Friday, September 14, 2007
Slepian, Wolf and relatives (I)
The [Splepian-Wolf'73] coding scheme is a famous result in coding theory, that inspired the field of distributed source coding. I guess this topic would be better for Michael's blog, but I am curious to ask some questions, and I want to describe a slightly related beast in the next post.
Review. You have k clients, and a server. The clients have some inputs x1, ..., xk, each of n bits, and they want to communicate all inputs to the server. Now assume these inputs come from some joint distribution with entropy much less than nk. Can one use similarly little communication?
If the distribution is rectangular, i.e. the xi's are independent, each client i can perform source coding (say, Huffman coding) based on his own distribution, achieving H(xi) communication. With dependencies, if clients broadcast their messages in order, each client can perform source coding based on his distribution conditioned on the previous messages. This achieves optimal total communication, since Sumi H(xi | x1, ..., xi-1) = H(x1, ..., xk).
Slepian and Wolf showed that it is possible to achieve optimal communication even if all clients communicate one message simmultaneously, and the messages are only seen by the server.
In fact, there is a whole simplex of possible scenarios for optimal communication. Consider k=2 to make notation easy. Then, it is possible for client 1 to send m1 bits, and client to to send m2 bits as long as:
- m1+m2 ≥ H(x1, x2)
- m1 ≥ H(x1 | x2)
- m2 ≥ H(x2 | x1)
Since then, people have developed efficently encodable and decodable distributed codes for all sorts of important special cases. A "special case" means what makes the inputs correlated (they are close in what metric?). To give realistic examples, the inputs may be close in Hamming distance, or in edit distance, or they may be numbers that are close in value (say, two noisy observations of the same event).
Questions. I never actually worked on this (but on something related, see next post), so I only have some meta questions. The field is usually sold as being important in sensor networks. Is this "for real", or just theoretical PR? People interested in sensor networks on our side of theory (eg the streaming folks) do not seem too aware or interested in this field. Why?
Posted by
Mihai
at
3:36 PM
4
comments
Athena and TCS
In the ancient days of radical democracy, Αθήνα was run by her people through direct involvement. The school of thought of this democracy held that the people governing themselves could not be wrong. The ἐκκλησία or Ήλιαία could not possibly judge wrongly, even when making impulsive decisions governed by mob mentality. Instead, if one of these institutions reached a decision shown later to be objectively wrong, it was because the people did not posses enough information at the time, or because they were misled.
In the scientific community (especially in theoretical branches), we are running our own experiment in radical democracy. We have essentially no outside constraints, no obligation to finish some research about some topic by some deadline. We are judging our own work, and allocating the resources among ourselves.
So if a PC rejects your paper, or NSF decides not to fund your grant proposal, you should be angry and make creative use of English adjectives over beer. But after this ritual dedicated to Πανάκεια, you should understand that your colleagues rejected your work not because they are ἰδιώτες (pun intended -- idiot originally meant people who were not involved in community decisions, preferring a private life), but because they didn't know better.
So give talks, lobby for your field over beer, write a 5-page introduction to every paper, or you know, maybe start a blog ;)
If the field really consists of narrow-minded people who permanently refuse to understand what you're talking about, you are in the wrong field.
Posted by
Mihai
at
3:52 AM
2
comments